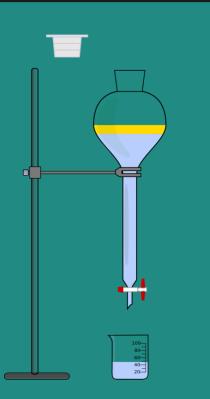
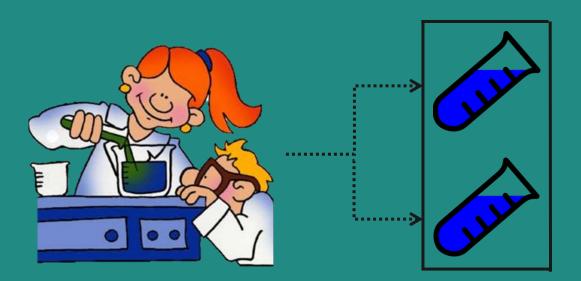

Sulfide simple test kit for industrial effluents

Presented by Waeaishah Waehama Suwaibah Billateh

Advisors Dr. Preecha Kasikamphaiboon Dr. Uraiwan Khunjan



https://th.pixtastock.com/illustration/28750503 https://www.thaigreenagro.com/กำจัดโรคในสวนยางพาราแบ/ http://punmai1.blogspot.com



Methods used for analysis H₂S in water

lodometric method

Methylene blue method

http://www.safetechthailand.net/articledetail.asp?id=17040 https://www.wikihow.com/Do-Spectrophotometric-Analysis https://www.kisspng.com/png-titration-funnel-laboratory-glassware-chemistry-pu-3000517/

To invent a sulfide simple test kit for industrial effluents

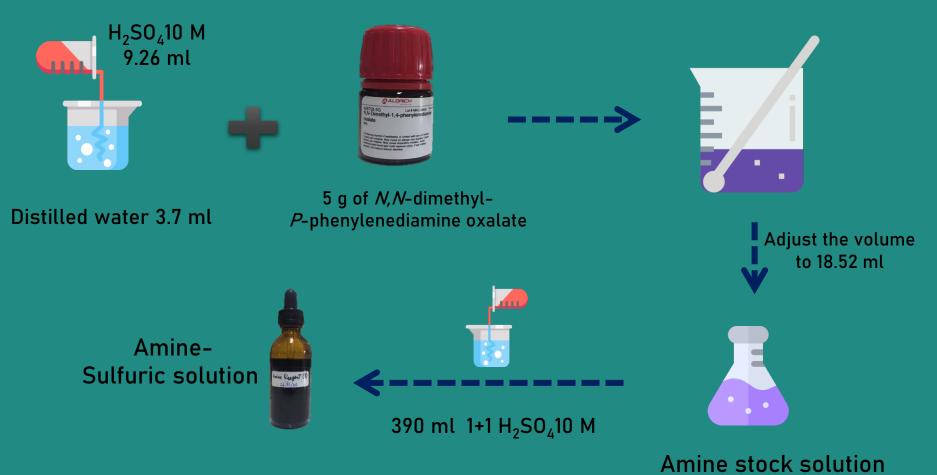
To study the efficiency of the test kit and compare to the standard methylene blue method

Sulfide simple test kit can be used to analyze sulfide for industrial effluents

Be able to compare capability of the test kit with the standard method

Amine-Sulfuric solution

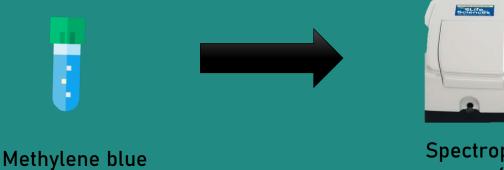
Ferric Chloride



https://chemglass.com/specmate-uv-vis-spectrophotometer https://www.fondriest.com/hach-2537800.htm

Preparation of Amine-Sulfuric solution

https://www.vectorstock.com/royalty-free-vector/conical-flask-with-chemical-colored-solution-vector-3756331



Reaction of the reagents

Measurement of absorbance

4.5 ml

Spectrophotometer at 664 nm https://chemglass.com/specmate-uv-vis-spectrophotometer

••

Preparation of different sulfide concentrations

Addition of Amine-Sulfuric solution

Addition of Ferric Chloride

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 mg/L 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 mg/L

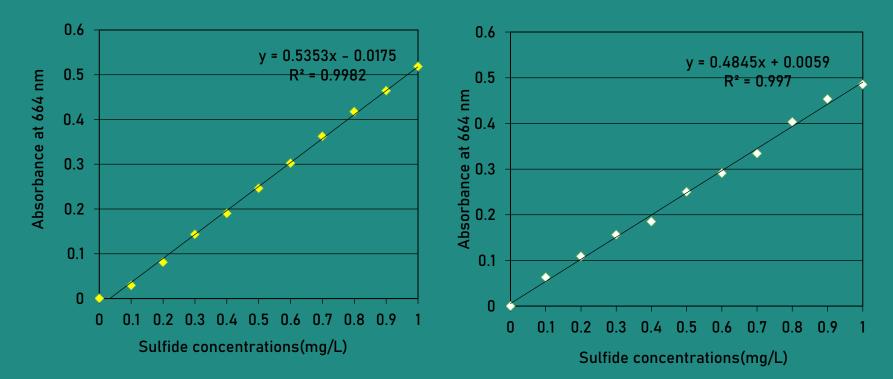


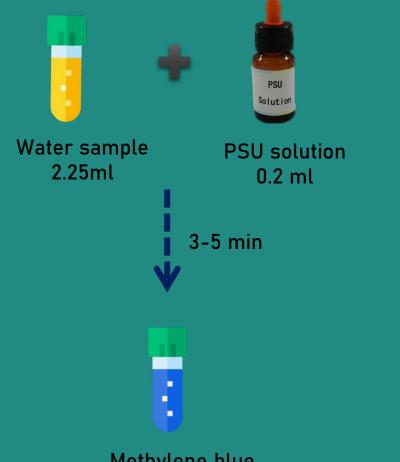
Fig 2. Standard curve of absorbance at different sulfide concentrations

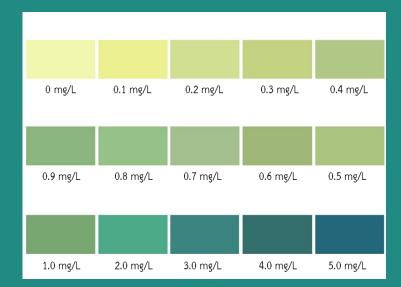
Fig 3. Standard curve of absorbance at different sulfide concentrations with addition of NH₃H₂PO₄

Capture photo to create the color bar

Color bar

Invention of test kit




Test kit

Testing of water sample

Methylene blue

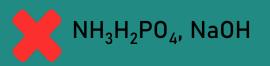
Table 1. Comparison of sample analysis results obtained from our test kit and the reference methods

Water samples from factories	Sulfide concentration (mg/L)		% Error
	Test kit (X)	Spectrophotometen (Y)	$\frac{ x-y }{y} \times 100$
Concentrated latex 1	0.25±0.06	0.20±0.05	22.96
Concentrated latex 2	0.97±0.03	1.14±0.14	15.29
Concentrated latex 3	0.75±0.22	0.78±0.26	3.61
Concentrated latex 4	0.78±0.10	0.97±0.22	19.39
Concentrated latex 5	0.65±0.05	0.92±0.12	29.26
Pail oil mill 1	0.65±0.05	0.75±0.11	12.98
Pail oil mill 2	0.93±0.08	1.27±0.21	26.37
Canned fish 1	0.60±0.22	0.62±0.10	3.50
Canned fish 2	1.02±0.43	0.88±0.21	16.08
Frozen seafood	0.58±0.21	0.74±0.15	20.85
mean	$[S^{2-}] \leq 1 \text{ mg/L}$ (Thai industrial effluent standard, 2559)		17.03

Conclusion

Advantages of the developed test kit

Reduce the number and amount chemical


Can be used and the result is obtained on site.

Cost-effective

Convenient and faster

